Endothelial Notch1 Is Required for Proper Development of the Semilunar Valves and Cardiac Outflow Tract

نویسندگان

  • Sara N. Koenig
  • Kevin Bosse
  • Uddalak Majumdar
  • Elizabeth M. Bonachea
  • Freddy Radtke
  • Vidu Garg
چکیده

BACKGROUND Congenital heart disease is the most common type of birth defect, affecting ≈2% of the population. Malformations involving the cardiac outflow tract and semilunar valves account for >50% of these cases predominantly because of a bicuspid aortic valve, which has an estimated prevalence of 1% in the population. We previously reported that mutations in NOTCH1 were a cause of bicuspid aortic valve in nonsyndromic autosomal-dominant human pedigrees. Subsequently, we described a highly penetrant mouse model of aortic valve disease, consisting of a bicuspid aortic valve with thickened cusps and associated stenosis and regurgitation, in Notch1-haploinsufficient adult mice backcrossed into a Nos3-null background. METHODS AND RESULTS Here, we described the congenital cardiac abnormalities in Notch1(+/-);Nos3(-/-) embryos that led to ≈65% lethality by postnatal day 10. Although expected Mendelian ratios of Notch1(+/-);Nos3(-/-) embryos were found at embryonic day 18.5, histological examination revealed thickened, malformed semilunar valve leaflets accompanied by additional anomalies of the cardiac outflow tract including ventricular septal defects and overriding aorta. The aortic valve leaflets of Notch1(+/-);Nos3(-/-) embryos at embryonic day 15.5 were significantly thicker than controls, consistent with a defect in remodeling of the semilunar valve cushions. In addition, we generated mice haploinsufficient for Notch1 specifically in endothelial and endothelial-derived cells in a Nos3-null background and found that Notch1(fl/+);Tie2-Cre(+/-);Nos3(-/-) mice recapitulate the congenital cardiac phenotype of Notch1(+/-);Nos3(-/-) embryos. CONCLUSIONS Our data demonstrate the role of endothelial Notch1 in the proper development of the semilunar valves and cardiac outflow tract.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch1 Signaling and Aortic Valve Disease: From Human Genetics to Mouse Models

Congenital heart disease (CHD) is the most common type of birth defect. Malformations involving the cardiac outflow tract and semilunar valves account for greater than 50% of CHD cases and are largely due to bicuspid aortic valve (BAV), which has a population prevalence of approximately 1%. Mutations in NOTCH1 were linked to BAV and aortic valve calcification in humans, consistent with the expr...

متن کامل

Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition

Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many co...

متن کامل

NOTCH1 missense alleles associated with left ventricular outflow tract defects exhibit impaired receptor processing and defective EMT.

Notch signaling is essential for proper cardiac development. We recently identified missense variants in the NOTCH1 receptor in patients with diverse left ventricular outflow tract (LVOT) malformations (NOTCH1(G661S) and NOTCH1(A683T)) that reduce ligand-induced Notch signaling. Here, we examine the molecular mechanisms that contribute to reduced signaling and perturbed development. We find tha...

متن کامل

Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults

Global inactivation of the metalloproteinase ADAM17 during mouse development results in perinatal lethality and abnormalities of the heart, including late embryonic cardiomegaly and thickened semilunar and atrioventricular valves. These defects have been attributed in part to a lack of ADAM17-mediated processing of HB-EGF, as absence of soluble HB-EGF results in similar phenotypes. Because valv...

متن کامل

Outflow tract cushions perform a critical valve-like function in the early embryonic heart requiring BMPRIA-mediated signaling in cardiac neural crest.

Neural crest-specific ablation of BMP type IA receptor (BMPRIA) causes embryonic lethality by embryonic day (E) 12.5, and this was previously postulated to arise from a myocardial defect related to signaling by a small population of cardiac neural crest cells (cNCC) in the epicardium. However, as BMP signaling via cNCC is also required for proper development of the outflow tract cushions, precu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016